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Abstract

An empirical model is developed to estimate the broadband unsteady force spectrum induced on a rigid sphere in a

nominally steady, uniform flow. The Reynolds number is sub-critical, and the frequency range considered is above the

low-mode Strouhal shedding frequency of the sphere (0:5pfd=U0p100; where f is the frequency, d is the diameter, and

U0 is the mean flow speed). The model uses the separation of variables assumption for the cross-power spectral densities

of the surface pressure fluctuations. The assumption is shown to be a proper engineering approximation except in the

lower part of the considered frequency range. In addition, the flow-induced unsteady lift and drag forces are measured

independently of each other using towed spheres in a basin of water. Both estimations, from the empirical model and

the data measured in the tow tank, show that the dimensionless power spectral densities of broadband unsteady lift and

drag forces are constant for fd=U0o1; and ðfd=U0Þ
�3 dependent for 1pfd=U0p100: The model predicts that the

broadband spectral density of the unsteady lift force is about 5 dB higher than that of the unsteady drag force, while the

measured data show the level difference between 3 and 7 dB. The empirical model presented here has application in

predicting the flow-induced noise of underwater hydrophones that sense acoustic particle velocity or acceleration.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Underwater acoustic sensors that respond to acoustic pressure are known as pressure hydrophones. Sensors that

respond to the acoustic particle velocity, or particle acceleration are called velocity, acceleration, or pressure gradient

hydrophones. The typical velocity (or acceleration) sensor in use today is basically composed of a geophone (or

accelerometer) encased in a neutrally buoyant body, which will move with the fluid particles as an acoustic wave passes

by it. Thus, these sensors are also called inertial sensors, e.g., Gabrielson et al. (1995). The subject of this paper is the

flow-induced noise on inertial sensors configured as spheres. A flow of interest might be generated by low-velocity (less

than 1 knot) ocean currents or wave motion. In practice, the diameter of the sensor is chosen with knowledge of the

typical flow velocity range, to assure that the Strouhal shedding frequency of the sensor is well below the operational

frequency range of the sensor. Consequently, the frequency range of interest is well above the sensor shedding frequency

and the spectrum is broadband. Here, high frequencies are defined as those that are above Strouhal shedding frequency

of the sensor body.
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The high-frequency flow-induced noise on a sensor can be attributed to one or more of three different sources: (i)

unsteadiness due to the vortex formation process in the near wake of the sensor, (ii) surface pressure fluctuations

generated by transitional, separated, and turbulent boundary-layer flow, and (iii) free-stream turbulence. All of these

sources produce pressure fluctuations on the surface of the sensor that, when integrated, yield an unsteady force. The

level and frequency content of an inertial sensor output is proportional to the spectrum of this unsteady force because of

Newton’s second law.

McEachern and Lauchle (1995) showed that the flow-induced noise measured on neutrally buoyant acoustic velocity

sensors configured as cylinders in cross-flow is indeed proportional to the hydrodynamic force fluctuations. Lauchle and

Jones (1998) demonstrated the same conclusion for a spherical velocity sensor. In both sets of experiments—the former

in a flooded quarry, and the latter in a tow tank—free-stream turbulence was nonexistent. The near-wake turbulence

and the natural boundary layer development on the surface of the sensor established a fundamental lower limit of flow

noise in these previous experiments.

We continue this previous research here under the assumptions that the sensor is spherical, the flow is sub-critical

(laminar boundary layer separation on the sphere triggers turbulent wake formation), and the free-stream turbulence is

negligible. The goal is to develop an empirical model for the unsteady force spectra (side, lift, and drag components).

This model is to be verified with the force spectra calculated from the measured data in a tow tank experiment. In

addition, we also compare with a recently developed ring vortex model for the force fluctuations on a sphere (Howe

et al., 2001), where the force is calculated by modelling the wake as a series of randomly oriented vortex rings of equal

circulation. The empirical analysis given in this paper is based on integrating the wall pressure fluctuations over the

sphere surface. These pressure fluctuations are assumed to be due to the separation of the laminar boundary layer and

the subsequent formation of vorticity in the near wake. The two-point statistics of these pressure fluctuations are

measured in a wind tunnel experiment. The reader is referred to Lauchle and Jones (1998), Wang (1999), and Howe et al.

(2001) for complete bibliographies of previously published work on the unsteady force acting on spheres in a steady,

uniform flow.

2. Empirical analysis

In the following, Reynolds number is defined as Re ¼ U0d=n; where d is the sphere diameter, U0 is the free-stream

flow velocity, and n is the kinematic viscosity. The empirical model is for the two-point statistics of wall pressure

fluctuations and their integration over the sphere surface under sub-critical flow conditions (3000pRep370,000). It is

proven in Wang (1999) that the wall shear stress fluctuations contribute negligibly to the forces predicted and measured

in this Re range. All physical quantities are assumed to be stationary in time.

The coordinate system is illustrated in Fig. 1. Given a surface pressure fluctuation pðy;f; tÞ on the sphere of radius a;
the rectangular components of the unsteady force are:

fxðtÞ ¼
Z Z

½pðy;f; tÞ dS� cos y

¼ a2
Z 2p

0

Z p

0

pðy;f; tÞ sin y cos y dy df; ð1aÞ

fyðtÞ ¼ a2
Z 2p

0

Z p

0

pðy;f; tÞ sin2 y sin f dy df; ð1bÞ

fzðtÞ ¼ a2
Z 2p

0

Z p

0

pðy;f; tÞ sin2 y cos f dy df; ð1cÞ

where �fxðtÞ; fyðtÞ; and fzðtÞ are, respectively, the unsteady drag, side and lift force. These forces are then Fourier

transformed and cast into coefficient forms:

*CxðoÞ ¼
*FxðoÞ
pa2q

¼
1

pq

Z 2p

0

Z p

0

*Pðy;f;oÞ sin y cos y dy df; ð2aÞ
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*CyðoÞ ¼
*FyðoÞ
pa2q

¼
1

pq

Z 2p

0

Z p

0

*Pðy;f;oÞ sin2 y sin f dy df; ð2bÞ

*CzðoÞ ¼
*FzðoÞ
pa2q

¼
1

pq

Z 2p

0

Z p

0

*Pðy;f;oÞ sin2 y cos f dy df; ð2cÞ

where tilde denotes a complex quantity, q ¼ rU2
0=2; r is the fluid density, and �NoooN: The two-sided auto-power

spectral density function of the unsteady drag coefficient is

FxðoÞ ¼ *C�
xðoÞ *CxðoÞ ¼ j *CxðoÞj2

¼
1

p2q2

Z 2p

0

Z 2p

0

Z p

0

Z p

0

*F12ðy1;f1; y2;f2;oÞsin y1 cos y1 sin y2 cos y2 dy1 dy2 df1 df2;

ð3Þ

where the star denotes the complex conjugate, and *F12ðy1;f1; y2;f2;oÞ ¼ *P�ðy1;f1;oÞ *Pðy2;f2;oÞ is the two-sided

cross-power spectral density of the surface pressure fluctuations. Following the notation of Bendat and Piersol (2000),

the spectral quantities are changed from two-sided to one-sided, i.e., Gx ¼ 2Fx and *G12 ¼ 2 *F12: This permits the model
to be compared to experimental spectra measured at only positive frequencies. In converting frequency to Strouhal
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Fig. 1. Three-dimensional illustration of the spherical coordinate system.
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number, St=fd/U0, Gxðf Þ must be further normalized by the time scale (d=U0):

GxðStÞ ¼Gxðf Þ
U0

d

� �
¼

1

p2

Z 2p

0

Z 2p

0

Z p

0

Z p

0

f *G12ðy1;f1; y2;f2;StÞgsin y1 cos y1 sin y2 cos y2 dy1 dy2 df1 df2: ð4Þ

Note that U0=q2d is grouped with *G12 such that *G12ðy1;f1; y2;f2;StÞ ¼ *G12ðy1;f1; y2;f2;StÞU0=q2d:
By changing variables from (f1;f2) to (f1;fd ), where fd ¼ f2 � f1; and using trigonometric properties, the force

auto-spectra become:

GxðStÞ ¼
1

4p2

Z 2p

0

Z 2p�f1

�f1

Z p

0

Z p

0

f *G12ðy1; y2;f1;fd ;StÞgsin 2y1 sin 2y2 dy2 dy1 dfd df1; ð5aÞ

GyðStÞ ¼
1

2p2

Z 2p

0

Z 2p�f1

�f1

Z p

0

Z p

0

f *G12ðy1; y2;f1;fd ;StÞgsin2 y1 sin
2 y2½cos fd � cosð2f1 þ fd Þ� dy2 � dy1 dfd df1;

ð5bÞ

GzðStÞ ¼
1

2p2

Z 2p

0

Z 2p�f1

�f1

Z p

0

Z p

0

f *G12ðy1; y2;f1;fd ;StÞgsin2 y1 sin
2 y2½cos fd þ cosð2f1 þ fd Þ� dy2 dy1dfd df1:

ð5cÞ

Because the incident flow is uniform and the bluff body is a sphere, rotation of the coordinate system in the f-
direction does not change the physical results. The cross-power spectral density *G12 is, therefore, homogeneous in the f-
direction:

/ *G12ðy1; y2;f1;f2; f ÞS ¼/P�ðy1;f1; f ÞPðy2;f2; f ÞS

¼/P�ðy1;f1 þ fr; f Þ Pðy2;f2 þ fr; f ÞS; ð6Þ

where the angle bracket / S denotes ensemble average over many measurements and fr is the angle of rotation.

Homogeneity of *G12 in the f-direction implies that *G12 depends on the separation angle, fd ; but not on the reference

angle, f1: Thus, Gz(St), and Gy(St), are equal. Eqs. 5(a)–(c) become

GxðStÞ ¼
1

4p2

Z 2p

0

Z 2p�f1

�f1

Z p

0

Z p

0

f/ *G12ðy1; y2;fd ;StÞSgsin 2y1 sin 2y2 dy2 dy1 dfd df1; ð7aÞ

GyðStÞ ¼ GzðStÞ ¼
1

2p2

Z 2p

0

Z 2p�f1

�f1

Z p

0

Z p

0

f/ *G12ðy1; y2;fd;StÞSgsin2 y1 sin
2 y2 cos fd dy2 dy1 dfd df1: ð7bÞ

By analogy with the Corcos (1964) model for the two-dimensional, homogeneous turbulent boundary layer wall

pressure fluctuations on a flat plate, a separable, empirical model for *G12; is proposed, viz.,

*G12ðy1; y2;fd ;StÞ ¼G11;nðStÞCðy1; y2;StÞ *Aðy1; y2;StÞBðy1;fd ;StÞ: ð8Þ

The first term is a normalization auto-power spectral density function defined at the streamwise location yn: The
remaining functions are defined as follows:

Cðy1; y2;StÞ ¼

1

G11;nðStÞ
1

ðy2 � y1Þ

R y2
y1

G11ðy;StÞ dy when y2ay1;

G11ðy1;StÞ
G11;nðStÞ

when y2 ¼ y1;

8>><
>>:

ð9Þ

*Aðy1; y2;StÞ ¼
*G12ðy1; y2; 0;StÞ

G11;nðStÞCðy1; y2;StÞ
; ð10Þ

Bðy1;fd ;StÞ ¼
*G12ðy1; y1;fd ;StÞ

G11;nðStÞCðy1; y1;StÞ
: ð11Þ

The function C is independent of f because G11ðy1;f1;StÞ ¼ G11ðy1;f2;StÞ ¼ G11ðy1;f3;StÞ ¼ ? ¼ G11ðy1;StÞ: It
describes the variation of the average auto-power spectral density between two streamwise points relative to G11,n(St).

The function *A accounts for the influence of y separation with fd ¼ 0 on the cross-spectrum. It is complex because of
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streamwise eddy convection. The function B accounts for the f separation with yd ¼ 0: It is a real function because

there is no mean convection of turbulent eddies in the f-direction. The phase of *G12 is due solely to eddy convection in

the streamwise direction. To further simplify Eq. (8), Eq. (11) is separated in its variables:

Bðy1;fd ;StÞ ¼ B1ðy1;StÞB2ðfd ;StÞ: ð12Þ

We note that B1(y1,St)=B1(y2,St) because the magnitudes of *G12 and *G21 are equal. Eq. (7) then becomes

GxðStÞ ¼
/G11;nðStÞS

4p2

Z 2p

0

Z 2p�f1

�f1

Z p

0

Z p

0

f/ðy1; y2;StÞS/ *Aðy1; y2;StÞS

/B1ðy1;StÞS/B2ðfd ;StÞS sin 2y1 sin 2y2dy2 dy1 dfd df1; ð13aÞ

GyðStÞ ¼ GzðStÞ

¼
/G11;nðStÞS

2p2

Z 2p

0

Z 2p�f1

�f1

Z p

0

Z p

0

/Cðy1; y2;StÞS/ *Aðy1; y2;StÞS

/B1ðy1;StÞS/B2ðfd ;StÞS sin2 y1 sin
2 y2 cos fd

� dy2 dy1 dfd df1: ð13bÞ

By defining

L1ðStÞ ¼
1

2p

Z 2p

0

Z 2p�f1

�f1

/B2ðfd ;StÞS dfd df1; ð14Þ

L2ðStÞ ¼
1ffiffiffi
2

p
p

Z 2p

0

Z 2p�f1

�f1

/B2ðfd ;StÞS cos fd dfd df1; ð15Þ

L3ðStÞ ¼
1

2p

Z p

0

Z p

0

/Cðy1; y2;StÞS/ *Aðy1; y2;StÞS/B1ðy1;StÞS sin 2y1 sin 2y2 dy2 dy1; ð16Þ

L4ðStÞ ¼
1ffiffiffi
2

p
p

Z p

0

Z p

0

/Cðy1; y2;StÞS/ *Aðy1; y2;StÞS/B1ðy1;StÞS sin2 y1 sin
2 y2 dy2 dy1: ð17Þ

Eq. (13) becomes

GxðStÞ ¼ /G11;nðStÞSL1ðStÞL3ðStÞ; ð18aÞ

GyðStÞ ¼ GzðStÞ ¼ /G11;nðStÞSL2ðStÞL4ðStÞ: ð18bÞ

Here, L1(St) and L2(St) may be termed the angular correlation area in the f-direction for the auto-power spectra of

the unsteady drag and lift coefficient, respectively. Likewise, L3(St) and L4(St) are the angular correlation areas for

the drag and lift spectra in the y-direction. The next task is to choose G11,n(St), to introduce models for C(y1,y2,St),
*Aðy1; y2;StÞ; B1(y1,St), and B2(fd,St), and to calculate the angular correlation areas Li(St), i=1–4. These models are

based on measured statistics of the surface pressure fluctuations on a sphere in steady, uniform flow.

3. Surface pressure measurements

The surface pressure fluctuations on a sphere were measured in a low-noise, open-channel wind tunnel, which was

operated inside an anechoic chamber. The test-section is 45.72 cm square by 1.5m long. Upstream of the test section is

an 11:1 contraction section and turbulence management screens. Downstream is a 2.6m long, 71 diffuser. Details of the

wind tunnel and its performance characteristics can be found in Wang (1999).

Two hemispheres, machined from 4-mm-thick plastic marine buoyancy balls were secured together with a thin tape to

make the 15.24-cm-diameter test sphere. Pressure transducers could be located in any of the 120, 0.234 cm diameter

holes drilled into the sphere surface. Modelling clay was used to fill holes not occupied by a transducer. The adhesive

tape strips were located far away from measurement points to avoid possible signal contamination from their minimal

influence on the local flow. As sketched in Fig. 2, the sphere was rigidly mounted on a 30.48 cm long steel sting, which

was threaded onto a vertical steel tube of elliptical cross section. This tube was anchored to the concrete floor of the

anechoic chamber. The sphere was centered in the square test section.
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Prior to making surface pressure measurements, velocity field surveys were performed in the absence of the test

sphere at U0 ¼ 1:75; 2.52, and 3.12m/s, which correspond to Re=17,800, 25,600, 31,700, respectively. Hot-wire

measurements were made in a plane normal to the flow direction and passing the virtual forward stagnation point of the

sphere. For all speeds, the variation of the local mean velocity across the test section was less than 72%. The

streamwise component of free-stream turbulence intensity was less than 0.5%. The flow field around the sphere was

observed using smoke-wire flow visualization techniques. For the Re range noted above, the flow separated from the

sphere at approximately 801 from the forward stagnation point and the near wake was turbulent, so the flow was

determined to be sub-critical.

The test section background noise was measured with a Br .uel and Kjæslit tube to determine the pressure trans-

ducer signal-to-background noise ratio. The slit tube, mounted in the test section, attenuates nonacoustic, flow-

induced pressure fluctuations on the microphone itself. The measured signal-to-noise ratios were 6 dB or higher,

except for 40ofo60Hz, which was affected by the wind tunnel blower noise. The spectra of the surface pressure

fluctuations were observed to decay rapidly for f > 60Hz, so the surface pressure measurements were confined to

1ofo40Hz.

Tunnel blockage or flow confinement may possibly affect the correlation measurements on bluff bodies, e.g.,

Blackburn (1994). Maskell (1963) gives a formula for estimating the effect of tunnel blockage on the steady-state drag

coefficient of bluff bodies in steady flow:

ðCd � CdcÞ=CdDaðAs=AtÞCd ; ð19Þ

where Cd is the drag coefficient in the wind tunnel, Cdc is the correct drag coefficient in an infinite medium, a ¼ 2:5 for a
symmetrical three-dimensional bluff body, As is the frontal area of the body, and At is the test section area. For this

investigation, ðCd � CdcÞ=CdD0:087: Although this calculation is for the mean drag coefficient, the unsteady drag is a

small perturbation about the mean, and directly related to the wall pressure statistics. We assume therefore that the

tunnel blockage has a similar effect on the unsteady pressure measurements, i.e., they should be within 9% of

unbounded flow measurements.

The unsteady pressures were measured using four 0.234 cm diameter Endevco model 8507C-2 piezoresistive pressure

transducers, which have flat frequency response from DC to 14 kHz. Batteries were used as the power supply to avoid

the electromagnetic interference of the 60Hz power line. Phase calibrations between all sensor pairs were performed

using a standing-wave tube. The phase varied within 721 for fo600Hz.

Spectral data were acquired using a dynamic signal analyzer. It was set up to use 1000 ensemble averages, a uniform

window, 0–800Hz frequency range, and 800 lines of resolution, meaning an effective analysis bandwidth of 1Hz. The

random error in spectral amplitude is inversely proportional to the square root of the number of spectral averages, e.g.,

Bendat and Piersol (2000). The random error for these tests is 70.1 dB. The uniform window was chosen to avoid

distortion at very low frequencies.

Test-section (45.72 cm x 45.72 cm)
Diffusion section 
(7ο from horizontal)

Power unit and 
Pre-amplifier Dynamic Signal 

Analyzer

Uniform air flow

Pressure transducers (4)  
Endevco 8507C-2

Personal computer

Fig. 2. Schematic of the wind tunnel test section (side view).
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4. Measurement results and semi-empirical model

4.1. Auto-power spectral density G11

Fig. 3 shows G11ðf Þ for Re=31,700 and y ¼ 021631: The farthest streamwise angular location is limited to y ¼ 1631

because of the supporting sting at the downstream side of the sphere. The low-mode (Kim and Durbin, 1988) vortex

shedding frequency under this condition is 4Hz. The shedding frequency appears in the spectrum of wall pressure

fluctuations, particularly at the separation point (y ¼ 801). The spectra measured in the laminar flow region (yo801) are

lower in level than those measured farther downstream in the turbulent regions; therefore, the subsequent modelling
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Fig. 3. Auto-power spectral densities of the surface pressure fluctuations at different streamwise locations for U0 ¼ 3:12m/s
(Re=31,700).
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concentrates on the measurement results in the turbulent region, above the low-mode shedding frequency. We note

there is no evidence of the high-mode shear layer instability frequency in these data. This is because high-mode

frequency must be detected with sensors placed in the wake flow. The nondimensionalized G11(St) are given in Fig. 4,

which are the spectra averaged from three separate test runs. The spectrum at y ¼ 801 is chosen as the normalization

spectrum G11,n(St) because the separation point on the sphere’s surface represents a well-defined, characteristic

location. Exponential functions of third-order polynomials are used to fit G11,n(St) and G11(y, St) with least mean-

square errors:

G11;nðStÞEexpð2:70St3 � 10:44St2 þ 9:26St� 8:97Þ; ð20Þ

G11ðq;StÞ ¼ ðg3y
3 þ g2y

2 þ g1yþ g0Þexpð0:86St3 � 3:08St2 þ 0:82St� 6:85Þ: ð21Þ

The coefficients g0–g3 are functions of St and are given in Table 1. The unit of y is radian.

The angle-averaged auto-power spectral density function, C(y1, y2, St) can be obtained using Eq. (9) and expressed

as follows:

Cðy1; y2;StÞ ¼ f0:25g3ðy
3
2 þ y22y1 þ y2y

2
1 þ y31Þ þ 0:33g2ðy

2
2 þ y2y1 þ y21Þ þ 0:5g1ðy2 þ y1Þ þ g0g

� expð�1:84St3 þ 7:36St2 � 8:44Stþ 2:12Þ; ð22Þ

where y2; y1X801:

4.2. Cross-power spectral density *G12

It is necessary to verify the two major assumptions made in Section 2. The first is the homogeneity of *G12 in the f-
direction, i.e., to verify Eq. (6). The second is the separability of *G12 into the streamwise ( *A) and circumferential (B)

functions, i.e., to verify Eq. (8). The homogeneity assumption is verified by fixing the measurement locations on the

sphere’s surface while rotating the sphere about the x-axis as to the change of fr: Several different combinations of
measurement locations ðy1;f1Þ and ðy2;f2Þ were tested to confirm this assumption. Fig. 5 shows one combination for

rotation angles of 01, 451, and 751. All other tests, which included changes of y1, f1, y2, f2, fr, and Re; show similar

results. Therefore, *G12 is proven to be homogeneous in the circumferential direction. Also, the phase of *G12 is seen to be

very nearly zero confirming the assumption in Section 2 that the function B is real.

The separability assumption is verified using three-point cross-power spectral measurements at locations ðyI;fIÞ;
ðyII;fIIÞ; ðyIII;fIIIÞ; with fI ¼ fII and yII ¼ yIII: The cross-spectral densities are nondimensionalized by the product of

G11,n(St) and C(y1,y2,St). The dimensionless cross-spectrum between points I and II represents the *A function, and

that between points II and III represents the B function. Within a tolerance of 2 dB, Fig. 6 shows that the magnitude of

the directly measured cross-spectrum agrees with that calculated from the separable assumption. The phases determined

by the two methods are also in excellent agreement. Other tests for different locations and Re show very similar trends.

The separable assumption is thus proven to be viable.

Table 1

Coefficients used in the empirical models for the auto- and cross-power spectral density functions

St 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

g3 3.56 3.17 3.03 2.61 2.43 2.17 1.93 1.64 1.44 1.72 2.02 2.29 2.51 2.89 2.43 1.89

g2 �20.88 �18.48 �17.95 �15.51 �14.24 �12.74 �11.23 �8.88 �7.48 �8.98 �10.46 �11.73 �12.55 �12.47 �10.85 �6.85
g1 40.56 35.57 35.28 30.84 27.99 25.28 22.81 16.99 14.27 17.13 19.71 21.65 22.5 21.37 16.99 7.72

g0 �24.06 �20.33 �20.66 �18.13 �15.97 �14.89 �13.70 �9.15 �7.81 �9.817�11.49 �12.58 �12.82 �11.63 �8.21 �1.49
a2 �3.42 �3.50 �3.40 �3.40 �3.30 �3.20 �3.00 �3.00 �2.90 �2.80 �2.80 �2.70 �2.30 �2.30 �2.30 �2.20
a1 0.84 1.10 1.30 1.30 1.20 0.94 0.67 0.55 0.29 0.05 �0.15 �0.30 �0.80 �0.80 �0.70 �0.60
b2 0.010 0.009 0.006 0.001 �0.003 �0.009 �0.014�0.019�0.023�0.027 �0.030 �0.032 �0.032 �0.031 �0.028 �0.023
b1 �0.093 �0.096 �0.100 �0.103 �0.107 �0.113 �0.119�0.128�0.138�0.148 �0.160 �0.172 �0.185 �0.198 �0.211 �0.225
e3 1.59 1.51 1.51 1.58 1.74 1.99 2.33 2.77 3.31 3.96 4.73 5.6 6.6 7.73 8.98 10.37

e2 �2.40 �2.87 �3.09 �3.31 �3.57 �3.90 �4.31 �4.84 �5.52 �6.37 �7.42 �8.69 �10.22 �12.02 �14.13 �16.57
e1 0.47 0.84 1.09 1.24 1.32 1.36 1.40 1.44 1.54 1.7 1.97 2.37 2.93 3.68 4.65 5.86
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The *A function is modelled as follows:

j *Aðy1; y2;Stj ¼ f0:23ðy1Þ
3 � 1:52ðy1Þ

2 þ 2:46y1gexp½a2jyd j2 þ a1jyd j�

� exp½0:09St3 � 0:51St2 þ 0:41St� 0:12�; ð23Þ

where coefficients a1 and a2 are listed in Table 1. Fig. 7 shows the fitting curves of j *Aj for y1 ¼ 911: For fixed separation
(yd ¼ y2 � y1), this model predicts an exponential decrease in j *Aj with increasing St: This is because the fluctuations at
high frequencies are associated with small-scale turbulent eddies, which decay more rapidly than large-scale eddies for
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any given yd : The function j *Aj also decreases with increasing yd because the turbulent eddies lose coherence at larger

separation distances. The dynamic wall pressure field on a sphere is clearly nonhomogeneous in the streamwise

direction.

Modelling the phase of *A; which is of maximum order 70.3 rad, is difficult. Fortunately, the effect of the phase is

negligible on the estimation of the unsteady force because only the real parts of the cross-spectra of the unsteady surface

pressures contribute, e.g., Wang (1999). Noting that Realf *Ag ¼ j *Aj cosð70:3Þ ¼ 70:96j *Aj; Neglecting the phase

variations results in a 70.2 dB error in the estimation of the unsteady force.

The real-valued B function of Eq. (12) is separated into B1 and B2 functions. The empirical models for these two

functions are:

B2ðfd ;StÞ ¼ expðb2jfd j
2 þ b1jfd jÞexpð0:06St3 � 0:34St2 þ 0:30St� 0:1Þ; ð24Þ

B1ðy1;StÞ ¼ e3ðy1 � 1:396Þ3 þ e2ðy1 � 1:396Þ2 þ e1ðy1 � 1:396Þ þ 1; ð25Þ

where the Strouhal number-dependent constants are given in Table 1.

4.3. Error analysis

In this experiment, the systematic error (bias error) is minimized by regularly calibrating the transducers. The

calibrations show less than 0.5% variation during the course of the measurements. As noted in Section 3, the random

error in measured spectral data is estimated to be 70.1 dB.

Besides the measurement errors, uncertainty is introduced when the dimensional data are nondimensionalized and

averaged over different flow speeds. Additional errors are introduced by the least mean-square fitting of the data curves,

each of which produces a small fractional and cumulative error. Because each curve fitting is different, the curve-fitting

errors have to be discussed individually.

Nondimensionalization of G11,n(St) introduces 71.5 dB uncertainty at y ¼ 801 according to the average scatter

among the spectra of the three test Reynolds numbers. The curve fitting of G11,n(St) vs. St introduces an estimated

70.1 dB (or 73%) error. The overall estimation error for the model of G11,n(St) is thus 71.6 dB.

The curve fitting of G11(y, St) vs. St introduces an estimated 70.1 dB (or 73%) error, while that of G11

(y, St) vs. y also introduces an estimated 70.1 dB (or 73%) error. The overall error for the model of

G11(y, St) is 70.3 dB (or 76%). As a result, the function C(y1, y2, St), calculated using Eq. (9), has 71.9 dB

uncertainty, of which 71.6 dB is from estimation during the nondimensionalization process and 70.3 dB from

curve-fitting processes.
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The curve fitting of j *Aðy1; yd ;StÞj vs. yd and St each introduces an estimated 70.1 dB (or 73%) error, while that of

j *Aðy1; yd ;StÞj vs. y1 introduce an estimated 70.1 dB (or 72%) error. The overall estimation error for the model of

j *Aðy1; yd ;StÞj is thus 70.4 dB (or 78%). The curve fitting of B2(fd,St) vs. St and fd each introduces an estimated

70.1 dB (or 73%) error. The curve fitting of B1(y1,St) introduces an estimated 70.1 dB (or 73%) error. The overall

estimation error for the model of B(y1,fd,St) is 70.4 dB (or 79%).

4.4. Unsteady force calculation

The nondimensional angular correlation areas L1–L4 can now be calculated from Eqs. (14)–(17) and are shown in

Fig. 8. One should not mistake L1–L4 as the correlation functions of surface pressure fluctuations. Those are implied in

j *Aj for the y-direction, and in B2 for the f-direction. The functions L1–L4 are used in Eq. (18) to obtain the spectral

densities of the unsteady drag and lift forces.
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The estimation errors for L12L4 can be calculated from the previous error analysis. L1 and L2 each has an estimated

76% error, while L3 and L4 each has an estimated727% error, which includes an estimated74% error for neglecting

the phases of the *A function.

There is no simple, explicit formula derived here for L12L4 because the fluctuating flow around the sphere is

statistically nonhomogeneous in the streamwise direction, meaning that *A and B include coefficients that depend on

Strouhal number (Table 1). The empirical model, however, is directly applied because the integrals of Eqs. (14)–(17) are

easy to evaluate numerically.

Fig. 9 presents the computations from Eq. (18). The predicted unsteady lift force is from 4 to 10 dB higher than the

predicted unsteady drag force. Both spectral densities show a St0 at lowSt; and aSt�3 dependence at high values of

St: Fig. 9 also includes a plot of the characteristic spectral density G11,n(St). Comparison of this with the other curves

in the figure shows that the shape of the L1–L4 curves of Fig. 8 is insignificant on the force calculations in a dB scale.

For practical purposes, the Strouhal number dependence of the correlation areas can be neglected and their values

replaced by the mean values %Li (i ¼ 124) determined by integration of the curves in Fig. 8. We find: %L1 ¼ 4:0; %L2 ¼ 6:0;
%L3 ¼ 1:0; %L4 ¼ 5:0: The estimated error for the unsteady lift and drag forces is about 73.3 dB. The function G11,n(St)

contributes 71.6 dB, while the error propagation from the curve fitting is 71.7 dB.

5. Tow tank experiment

An experiment is now described where the flow-induced unsteady side force and drag force are measured

independently of each other on towed spheres in a basin of water.

5.1. Experimental setup

The tow tank and supporting apparatus are sketched in Fig. 10. The fiberglass tank is 25.4 cm wide, 25.4 cm deep and

9.2m long. The towed sphere moves along the centerline of the tank, suspended by four fishing lines tied to aluminum

rods that are bolted to the bottom of a trolley. A computer-controlled linear micro-stepping motor drives a loop of

plastic-coated, braided steel cable that moves the trolley along the length of a rail. The tank is supported on resilient
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Fig. 10. Quiet tow tank facility and supporting apparatus.
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mounts to reduce any vibration transmission from the laboratory floor. The drive motor is mounted in an enclosure to

minimize the effect of motor noise.

Two spherical models are made, respectively, for measuring the unsteady drag and side forces. Each 7.62-cm-

diameter model is made from a volume mixture of 14 parts polystyrene micro-balloons to 3 parts epoxy resin cast in a

spherical mold. This combination of materials results in a neutrally buoyant sphere. A Geospace Corp., GS20-DH7

geophone is encased at the center of the spherical mold and oriented in the appropriate direction for sensing the

unsteady velocity due to the unsteady drag or side force. The sensitivity of these models to flow-induced motion (and

also acoustic disturbances) is maximized when the models are neutrally buoyant. The sensors are calibrated with respect

to a standard accelerometer both in air and in water by using an electromagnetic shaker. Added mass effects are

accounted for.

The four-point suspension of the side-force sphere limits the motion of the sphere to the y-direction, while the

suspension of the drag-force sphere limits the motion to only the x-direction. The signal cable exits the sphere at the

rearward stagnation point to avoid any influence from the wake of the signal cable.
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The spheres are towed at four different speeds: 10, 15, 20 and 25 cm/s, corresponding to 6680pRep16,700. The

geophone signal cable is connected to a 40 dB pre-amplifier and to a spectrum analyzer. Because of the limited time

available for each tow run, the data from several runs at the same towing speed are averaged to achieve a total of 100

averages. The random error in the present spectral data is 0.4 dB.

5.2. Results

The measured power spectral densities of the side and drag forces [GLðf Þ and GDðf Þ; respectively] are shown in

Figs. 11 and 12. The background noise force, measured when the mechanical components were functioning but no flow,

was 10 dB or more lower than all the signals. The measured and predicted lift and drag coefficient spectral densities are

shown in Figs. 13 and 14, respectively. The levels of GLðf Þ are 3–7 dB higher than those of GDðf Þ: This is in agreement
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with the predictions from the empirical model presented here, and with the analytical model of Howe et al. (2001). Aside

from the 72 dB scatter due to random errors, the results of the tow tank measurement compare rather well with the

high-Strouhal number predictions. It is difficult to judge the quantitative differences of the predictions based on the two

models. For Sto1, the model of Howe et al. (2001) depends on the mean orientations of shed vortices, /ynS; for
which no direct experimental information is available. Although the empirical model is based on direct wall pressure

statistics, it depends on the separable assumption and on the curve-fitting processes of the model functions. The

separable assumption tends to overestimate the cross-power spectral densities at low Strouhal numbers, and the error

propagation from curve fitting may be as high as 73.3 dB. Thus, within the accuracy of either model, the comparisons

shown in Figs. 13 and 14 are considered quite good. This further suggests that the extrapolation of the empirical model

curves using St�3 to higher values of St is valid.

6. Conclusions

A rigid sphere subjected to steady uniform flow experiences unsteady lift and drag. The high-frequency spectra of

these unsteady forces are determined by an empirical model based on measured wall pressure statistics, and by direct

tow tank measurement. The unsteady force is computed from the integral of the wall pressure fluctuations generated in

the turbulent flow regimes over the sphere’s surface. This is a direct consequence of the separated boundary layer and

the formation of vorticity in the near wake. The surface pressure fluctuations are found to be statistically homogeneous

in the circumferential direction, and nonhomogeneous in the streamwise direction. For Strouhal numbers above the

low-mode shedding frequency, the auto-power spectral density (and the magnitude of the cross-spectrum) of the surface

pressure fluctuations is broadband and decays exponentially with Strouhal number. The magnitude of the spatial cross-

spectrum decays more rapidly for circumferential separations than it does for streamwise separations. This is because

the turbulent energy is convecting in the streamwise direction causing the eddies to retain coherence over longer

streamwise distances than they do in the circumferential direction. A separation of variables assumption is invoked on

the cross-spectral densities, which turns out to be a good engineering approximation. Because of the nonhomogeneous

nature of the streamwise wall pressure field, the separable form must, however, include a function that describes the

cross-spectrum dependence on the reference location.

The empirical model predicts the auto-spectral densities of both the unsteady lift and the unsteady drag. Both are

shown to beSt0 dependent forSto1 andSt�3 dependent for 1pStp100. The model predicts that the unsteady lift

force levels are 3–7 dB higher than those of the unsteady drag force. This is in very good agreement with the spectral

data obtained in the tow tank experiments, and with the predictions based on the ring vortex model of Howe et al.

(2001). The Howe et al. model hypothesizes that the dominant source of unsteady force is the nascent vortex ring of the

low-mode shedding process. The random orientation of successively shed vortex rings produces the nondiscrete

broadband features of the high-frequency force fluctuation. Because of the strong agreement among the actual force

data, the predictions with the empirical model, and the predictions with the ring vortex model, it is concluded that the

turbulent wall pressure field created over 801pyp1801 is very likely the result of the low-mode vortex shedding process,

which of course, is trigged by the boundary layer separation at y ¼ 801: Either model can be used with confidence to

predict the flow-induced self-noise on underwater inertial acoustic sensors, as is done in Wang (1999).
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